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Nonlinear Rayleigh-Taylor instabilities in fast z-pinches

Aaron R. Miles

Lawrence Livermore National Laboratory, Livermore, California 94550

A simplified analytic model is presented to describe the implosion of a plasma column by
an azimuthal magnetic field of sufficient magnitude to drive a strong shock wave into the
plasma. This model is employed together with buoyancy-drag-based models of nonlinear
single-mode and turbulent multimode Rayleigh-Taylor (RT) growth to investigate the
mixing process in such fast z-pinches. These models give predictions that characterize
limitations the instability can impose on the implosion in terms of maximum convergence
ratios (CR) attainable for an axially coherent pinch. Both the implosion and instability

models are validated with results from high-resolution numerical simulations.
I. INTRODUCTION

Rayleigh-Taylor (RT) instabilities' are ubiquitous in nature, and z-pinches offer
an important platform for their study. In a z-pinch, the driving magnetic field plays the
role of the lighter fluid accelerating the plasma cylinder, which acts as the heavier fluid.>

> The driving magnetic pressure and the plasma thermal pressures are given, respectively,
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where Iy, is the driving current in MA, R, is the initial radius of the plasma cylinder in
cm, Pmgrec 1S the plasma mass density in mg/cm3 , Z, A, and T are its charge state, atomic
weight, and temperature, and 7 = 273.15 K.

A fast z-pinch is the implosion of a plasma cylinder behind a cylindrically
convergent shock wave driven by a high-current discharge. If the condition P >> Py, 1s
satisfied, then the Mach number of the implosion shock will be high.

In any such magnetic implosion, the total pressure (the sum of magnetic and
thermal pressures) and density gradients have opposite signs at the plasma-vacuum
interface. Consequently, the interface is RT unstable. Instabilities can allow for local
plasma compression beyond the radius at which hydro-magnetic equilibrium is
established after first bounce, but also limit the maximum convergence ratio (CR)
attainable for an axially coherent pinch.®

In this paper, we employ a simplified analytic z-pinch model together with
nonlinear and turbulent RT growth models based on the buoyancy-drag picture’ " to
investigate the mixing process in fast z-pinches. These models allow us to characterize
limitations that the instability can impose on the implosion in terms of maximum CR for
an axially coherent pinch. The implosion model is compared to 1D implosion
simulations, and the instability model is compared and calibrated with 2D high-resolution

numerical simulations.

II. IMPLOSION MODEL



The basic z-pinch geometry is shown in Fig. 1a. We assume an infinitely long
plasma column with initial radius Ro. An electrical current of arbitrary time-dependence
is applied to the outer surface of the plasma column, resulting in a time-dependent
implosion velocity v(z) = dR(1)/dt. If the time-dependent current is parameterized by
I(t) =1,B(¢), where I, is a characteristic dimensional current and the time-dependence is

contained in the dimensionless function B(7), then the magnetic pressure can be written as

RO
R(1)

P,(1) = %poué( ) B(1). 3)

where py is the initial pre-shock plasma density and the characteristic speed uy is given by
u, =1, /(Roc npo) in cgs units.

Within the fast z-pinch model, the only limitation on the driving current is that its
magnitude is sufficiently high that a strong shock wave is driven into the plasma. The
strong-shock limit allows for a very simple analytic model of the implosion based on
three main statements. First, pressure balance between the shocked plasma and B-field
gives

Py =P, )
where the asterisk denotes a post-shock quantity. Second, we use equapartition of energy

behind a strong shock to relate the thermal and dynamic pressures:

1 . 1 .,
P =—pu, 5a
b =5 Pl (5a)
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where P; is the ion pressure the subscript s denotes values just behind the shock front.

Since we will always work in the lab frame where there is no flow ahead of the shock,



asterisks will be omitted on velocities. Thus u; is the fluid velocity just behind the shock
front.

Finally, we need to identify a relationship between pressure, density, and velocity
just behind the shock front with the same quantities at the interface. If we neglect
gradients in the shocked plasma and include a factor to account for cylindrical

convergence, then the last two model components are expressed as

I . 1 R
_Pth=_ps'_9_v2’
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(5b)
where v is the plasma-vacuum interface velocity.

As we shall see, the model based on Egs. 3, 4, and 5b does a remarkable job of
capturing the 1D pinch trajectory for a variety of current forms even when there are

significant density, pressure, and velocity gradients in the shocked plasma. Consequently,

we will make as our third model component the as yet unsubstantiated assumption that

Riu

2
P, =RZ&(1), ©)
in order to recover Eq. (5b) from (5a). For an isothermal plasma, there is then a
corresponding relationship for the plasma density, which grows due to the initial strong
shock, cylindrical convergence, and radial convergence when the implosion speed at the
interface (v) exceeds the implosion speed just behind the shock. The extent to which Eq.
(6) is a reasonable assertion will be checked later by comparing with 1D numerical

simulations.

We define dimensionless radius, velocity, and acceleration variables & = R/R,,
T=1t/t,, and 1, = %4y + IR,/ u,, in terms of which Eq. (4) becomes a first-order

differential equation for the pinch radius:
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This can be compared to the more complicated nonlinear second-order differential
equation obtained by applying Newton’s second law to a snowplow shock®. With our

notation, that result is:

dl .ndE]__ 4 )
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Unless B(§) is known, we must rely on numerical integration for the solution to Eq. (7b).
Unlike the snowplow model, Eq. (7a) can be analytically integrated (as long as 3(7) is

analytically integrable) to give the dimensionless radius, velocity, and acceleration:
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Significantly, the dimensional drive current appears only in the characteristic time to.

We apply the implosion model to four different functional forms for the drive current:

B =(t/1,) (11a)
Bo =(1-t/t,) (11b)
B =sin(w/2-1/1,) (11c)
B =[1+11-5]", (11d)

which we will refer to, respectively, as rising power law, falling power law, sinusoidal,

and a simple circuit model. For both power-law forms, the solutions we will present are



valid for n > -1. In the first three forms, ¢ is a characteristic current time. In the simple
current model case, we assume that the total inductance per unit length consists of a
constant external part and an internal part that is initially zero and increases with

convergence ratio: L_, ~ 1+ A(1-&). The parameter A gives the maximum relative

contribution of the internal inductance to the total inductance.

Strictly speaking, the two current forms that start from zero validate our primary
model] assumptions (small plasma thermal pressure relative to magnetic pressure) for
some period of time. However, we anticipate reasonably accurate results as long as the
model assumption is met on a timescale that is short compared to the pinch time,
Similarly, the assumption of large magnetic pressure can potentially break down part way
through the implosion in the decaying-current models, but starting with a sufficiently
high current can in many cases ensure that this does not happen before the pinch time.

The snowplow model [Eq. (7b)] is compared to the fast z-pinch model in Fig. 1b.
For power-law rising currents with # > 1, agreement between the two models is
remarkably good. As we move to more slowly rising currents, then constant current, then
decaying currents, we find that disagreement between the two models becomes large,
with the snowplow model predicting an earlier pinch time than the fast z-pinch model. In
what follows, we will consider in more detail the fast z-pinch model applied to the
various current forms and compare with 1D numerical simulations. For the constant
current as well as the decaying current form shown in Fig. 1b, the simulations agree with
the fast z-pinch model rather than the snowplow model.

In the case of rising power-law current [Eq. (11a)], we find the plasma implodes

according to
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The pinch time is defined by the time the radius is predicted to go to zero. For the power-

law rising current, Eq. (12) gives
n 1/(n+]) 1(n+1)
rp=[(n+1)r,] =r,[(n+l)/1r,] : (13)
Before calculating the velocity and acceleration (and later the perturbation growth), it is

useful to rewrite the current function B in terms of dimensionless radius &:

/3(&)=[(l’l+1)’17;1(1—&3/2)]“/("“) (14)

Then the velocity and acceleration are given respectively by
21 _ ni(n+1)
U=—§Em[(n+l)r,1(l—§3’2)] (15)

dU _ 2 1 -2n/(n+l) l+ n—(l—-zn)§3/2 16
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The radius vs. time predicted by the model for a number of increments is plotted in Fig.
(2a), and the velocity and acceleration vs. scale radius are shown in Fig. (2b) for the cases
of constant (n = 0) and linearly rising (n = 1) current. In order to facilitate plotting
together results for varying powers n, the characteristic current time #; is chosen to the
keep the implosion time constant and equal to the = 0 value of #, = #o. That is, we

choose 7;= (n+1)"". The n = 0 constant current case is particularly simple, with
E=[1-7]", BE)=1,v=-2/3-", and dv/dr=-2/9-§.

With falling power-law currents [Eq. (11b)], the dimensionless radius, pinch time,

velocity, and acceleration are given by:
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Again, we have made use of the re-expressed current function
nl(n+l)
B& =[1-(n+ 17 (1-87)] . 1)

Falling-current results are plotted in Figs. (2¢) and (2d). Choosing 7 = 0 of course gives
the same constant-current result found in the rising-current form. Here again we have
chosen the characteristic current times to give a fixed implosion time. This time the
requirement is ;= n+1, for which &(¥) is a power of A(r) and 7, = 7. The parameter
choice of n = % together with t, = 3/2, which gives f(7) = N1-21/3 | is particularly
significant in that it gives constant implosion velocity. In this case post-shock dv/dr = 0 as
the 1/R* increase in magnetic pressure is exactly balanced by the decrease in drive
current. This is apparent in Fig. (2¢), and can also be seen by setting the acceleration in
Eq. (20) equal to zero.

With the sinusoidal current form [Eq. (11c¢)], we find

E= {1 _2 1:1[1 - cos(E I—)]} (22)
1 2 1

T =grl cos'l(l—gr,") (23)
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Results of scaled radius vs. time are shown in Figs. (2¢), this time together with attendant
current profiles. With the sinusoidal form as we have parameterized it, the minimum
allowable value of the current time #; is 7/4 if we require that the current does not change
direction before the pinch time. With this maximum value, the current rises to its peak
value and then falls back to zero at precisely the implosion time. When the current time is
very long compared to the implosion time (#;>> 1, ), the plasma sees an essentially
linearly-rising current profile.

With the simple circuit model of Eq. (11d), the radius and time are related by

T=(1+ A=)+ %A1-5"), (28)
which gives the pinch time

T, =1+%A (29)

The velocity and acceleration are given by
_ 2 -1/2 -1
U——§§ [1+ 40 -8)] (30)
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As it should, this reduces to the constant current case when A = 0. Radius vs. time is
plotted in Fig. (2f) for the A = 0 constant current case, A = 1 for potentially equal
contribution of internal and external inductances, and infinite A for pinch-dominated
inductance.

The implosion model is shown in Fig. 3 to compare well up to first bounce with
1D Ares'!' simulations for a variety of current profile forms. Namely, we include constant
current [Fig. (3a)], linearly rising current [Fig. (3b)], the B(t) = N1-27/3 falling current
case predicted to give a constant implosion velocity [Fig. (3¢)], and another falling-
current special case that, as will be discussed later, is predicted to be stable according to
the instability model. The simulations use hydrogen gas described by tabular equation of
state and conductivities, and we specify P,(I,,R,)/P, ~ 10" based on the dimensional
current scale /y, corresponding to a characteristic Mach number M(Io,Ro) = 90. In each
case, the red outer curve shows the simulated trajectory of the plasma-vacuum interface.
Black lines show simulated Lagrangian trajectories of ten points initially equally spaced
in radius in the plasma column. Thus one can follow the propagation of the shock wave
as well as the interface motion. Each plot also includes two blues lines generated by the
model. The upper blue curve denotes the model-predicted interface trajectory, which
overlays the simulation result so well up to first bounce that it is somewhat difficult to
discern. The lower blue curve gives a predicted shock trajectory based on mass

conservation and assuming constant density across the shocked plasma layer:

1-o&™
1-0&

E=¢ (32)
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where the inverse strong shock compression factoro = (y —1)/(y + 1). Independent of the
current profile, this gives & =0 when & =0, or £ =1/4 for y =5/3. The shock trajectory
from the simulation is captured reasonably well by this simple model in the constant-
current case, but not when the current varies in time. This suggests that gradients in the
shocked plasma must be included in order to capture the shock trajectory in general.

In Fig. 4, we plot radial fluid variable profiles in the shocked plasma at § = 0.6 for
the first three cases considered in Fig. 3. The density ratio is p, / p, = 4.2 at the shock
front, corresponding to an effective adiabatic index of 1.6. Density gradients are
significant, and non-zero velocity gradients are apparent except in the constant current
case. As a measure of the validity of the model assumption Eq. (6), we also define and
plot the ratio of ion pressure to fluid velocity squared, scaled to give unity at the shock
front:

J = (Plpou)[2/(y+ D] (33)
According to Eq. (6) and assuming a fully-ionized hydrogen plasma, the quantity J
should fall to (1/€)/(1+Z")=5/6 at the interface at § = 0.6. Instead, it rises to about 1.1
in the constant- and falling-current cases, and to 1.3 in the rising-current case. Thus at
this radius the model assumption is violated with these current forms at the 30-60% level.
However, the fact that the implosion model so effectively describes the plasma-vacuum
trajectory in the time-varying-current test cases indicates that the velocity factor in Eq.
(6) is an adequate accounting for the gradients. There is no such accounting in the shock
trajectory model, which is why it does a poor job in most cases. However, the shock
trajectory does not enter directly into the instability model that is the focus of the

remainder of this paper, and therefore its inadequacy is not of immediate concern. Its
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indirect effect is to limit the time of first bounce that marks the end of the validity of both

the implosion model and the instability model to which it serves as input.

II1. INSTABILITY MODEL

An RT growth function can be used to characterize instability evolution due to
time-dependent acceleration.'?* For the z-pinch implosion, we define the RT growth

function
f(r) = [ dr[-avidt-y, (34)

where the first term under the square root is the contributions from interface acceleration
in the lab frame, and the second is an effective gravity term present even for constant
velocity implosion or hydro-magnetic equilibrium.

For the fast z-pinch, the interface acceleration term from the implosion model is

given by Eq. (10). The effective gravity term due to the nonuniform B-field is

e (35)
oV R p Rp

F_ PA 2PB__3P_;‘,_
m
The same g, comes from considering E x B drifts due to field gradient and curvature. In

our dimensionless units and assuming that density varies across the shocked plasma layer

only due to cylindrical convergence, we have

2 4(y-1) B v’
p=8yle IRy =———— " = —(y =) —. 36
Yo = 8o o & (y )5 (36)

This effective gravity term is always significant compared to the interface acceleration

term. Inserting both terms into Eq. (34) for the growth function, we find

12
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The utility of considering the RT growth function is that it can be used to
represent all of the time dependence in models of nonlinear single mode and “turbulent”
multimode models based on buoyancy-drag or self-similarity. In addition, for
accelerations that are constant in time, the linear growth® is exponential in f:

a(t)/a, = exp{[kR,f()}. (38)
Based on a terminal-velocity buoyancy-drag model,”'" nonlinear single-mode growth is
linear in f:

h_ (/R = yCo MR, f(1), (39)
where the drag coefficient for bubbles is given by C,, = {37r, [3’1} 203D and P is the first

root of the zero-order Bessel function.”'* Based on self-similar growth'” or bubble-

merger'®'7 models that describe the inverse cascade from smaller to larger perturbation

scales, multimode turbulent mix widths are given by:'%1?
h,(O/R, = [y /R, + Ve f(D)] =h, /R, + >, (40)

where the parameter o, = 0.06 for bubbles in classical RT and as — 2 as A — 1.2
Such models can give asymptotic mix widths that are quadratic in f'and independent of
the initial conditions (perturbation amplitude and wavelength) once Na f()>>+/h,/R,.

In order for this loss of memory of initial conditions to occur before the bubble tips reach

the axis [h,(z)/R =1], the model requires JhO/RO << \[gmm /2,0r hy/R, <&, /400.
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Note that this result depends on the model parameter a only implicitly through the
minimum radius & .
If the total acceleration in Eq. (34) is constant in time and we allow for Atwood
number less than unity, then we recover the classical asymptotic result'® A(t) = aAg,,t* .
Neglecting the effective gravity term and driving the instability growth with the interface

acceleration term only, we find that the asymptotic turbulent mix widths scale with the

distance traveled by the interface (7)=2A f f didr' g(t") /R, =2A(1-E") as long as the

interface acceleration is a power law in time g ~ " with m > -1. Since this is not true in
general, and in any case the effective gravity term is significant relative to the interface
acceleration term, instability growth in a z-pinch is not proportional to the distance
traveled by the interface.

For power-law rising currents, the implosion model gives the RT growth function

e ol D S L
(&) =~y Afgﬁ\[l+2y_ln+ll_§3/2, (41)

while for falling power-law currents the result is

A [ 3 &
& =r-4]. @\/1+2y (42)

“1n+11-8" -7, /(n+1)

Both give f(§) = 24/y - }72(1 - & 2) for constant current (# = 0). With the constant

1/2

implosion velocity falling current case of n=1/2, f; = 3t4/2, f(t) =(1-37/2) ", Eq. (42)

gives the RT growth function f(§) = 24/y - 1(1 - 5”2) , which is less that the constant-

current growth by a constant factor \/ (v =1)/(y - 1/2). Without the effective gravity term,

the model would in this case predict no instability (i.e. / = 0) for this case. Equation

14



(37b) does, however, vanish in the event that B(€) =&'"". This special case is analogous

to conducting a gravitational RT experiment inside a free-falling laboratory, and

corresponds to a power-law falling current with n = (v-1/ 2)/(2 -7),

=1, =1.5/(2-7y). For y.s= 1.6 this gives or n = 2.75, 7= 3.75. As shown in Fig. 3d,

I 4
the 1D pinch dynamics are captured well by the implosion model up to first bounce, but
we find a disappointing CR .y = 2.2 due to the rapidly falling current. This minimum

radius is reached at 7, =1.2 =7, /3. Even in the absence of instabilities, such rapidly

falling currents do not deliver high plasma compression.

The effect of the two terms in Eq. (34) on the linear instability growth is explored
in Fig. 5 by comparing the model predictions to a 2D Ares simulation of a single mode
perturbation, driven by a constant current source, with and without interface acceleration.
Equation (38) is only valid for constant acceleration, so we can only apply itas an
approximation when the interface convergence is very small. In Fig. 5a, we initialize the
problem in hydro-magnetic equilibrium so that dv/df = 0 and only the effective gravity
term contributes. While the perturbation remains linear, the model does a reasonable job
of describing the instability growth. In Fig. 5b, the condition for a fast z-pinch is
satisfied. During the linear phase, including either just the interface acceleration term or
the effective gravity term results in an under-prediction of the growth. When both terms
are included, the linear growth is well described by the model. The effective gravity term
gives the larger contribution, but neither is negligible.

As long as the fast-implosion model is valid, the instability growth vs radius is
never affected by the dimensional drive current. For power-law rising currents, Eq. (41)

suggests that instability growth is also not affected by the characteristic current time #; -

15



only by its functional form. However, the characteristic current time does affect the
growth with falling currents. The inevitability of this statement is easily seen by
considering that, as the current decay time becomes long compared to the implosion time,
the system behavior must approach the constant-current case. Conversely, in the #; <<t
limit, the falling-current growth as a function of radius is equal to the 7’ growth for the
same n. Of course if the current decay is too rapid then the implosion will not reach a
minimum radius as small as in the rising-current case, so the instability growth actually
realized during the pinch will be less.

Turbulent mix widths predicted by the model for rising and falling power-law
currents are shown in Fig. 6a. The perturbations amplitudes are normalized to the
instantaneous radius of the unperturbed interface, and are plotted against scaled radius.
For reasons that will be discussed later, we use o = 0.108 instead of the o = 0.06 typical
of classical RT. Constant current produces more mix than falling currents, and rising
currents produce more mix than constant or falling currents.

With constant current, we can write simple analytic expressions for the predicted
instability growth. The nonlinear single-mode growth for 2D bubbles driven by a

constant current is

h,/R =2/ = HIGmMR,(1-§"2)/&. (43)
We define the maximum convergence ratio for an axially-coherent pinch (CR ) limited
by instability growth as the CR based on the unperturbed interface position for which
instability bubbles are predicted to reach the origin. For a nonlinear single-mode

perturbation, we find 4,/R = 1 at

16



CRmax = 1/gmm

(44
= |40y~ HIGRINR, +24/7 %)/(3n)NRO(1 124 - %)/(3Jr)NRO/4)] 9

Assuming infinitely small initial amplitudes with proportional wavelengths, turbulent mix
widths are given by

h /R = 4(y - a1/ -1) | (45)
The maximum CR for an axially coherent pinch limited by multimode perturbation

growth is therefore

CR_ =1/E = [1 +(2i = e )]z (46)
This gives CRyax = 8.4 for a = 0.060 and CRpax = 5.8 for oo = 0.108.

For varying n, the CRp,« predicted by the asymptotic turbulent mix model is
shown in Fig. 7. Again, we see that constant current produces more mix than falling
currents, and rising currents produce more mix than constant or falling currents. For
power-law rising currents at high n, CRynax asymptotes to a minimum value of about
three.

We previously noted that for power-law falling currents the instability growth and
even the nature of the implosion depend on the current decay time. Yet in Fig. 7a we
gave only the results as a function of » for the case of 7; equal to the critical value 7 i =
n+ 1 at which &) is a power of 5(f) and 7, = 7;. In Fig. 9a, we show the pinch radius vs.
time predicted by the model for a fixed n = 1/2 and four different values of 7;. At infinite
1,, the result is identical to the constant-current case. Below the critical scaled rise time

Ty = 3/2, the plasma does not fully implode. Consequently, for 7; < 7;.,; we find that
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CR e 18 limited by the 1D implosion rather than by the instability. At 7jcri, CRpmax 1S
maximized, and above ;. it approaches the constant current value as expected.

For the sinusoidal current form, the RT growth function is

(47)

f(§)=Mf;dT§\/1+ ! 2 | (n/21,)1-E")

3
2y=121-E7 1-(n/dt,)1-E"?)’
and the predicted turbulent mix with is shown in Fig. 6b for three different values of ..
When t; >> 1, , the current rise is essentially linear in time and the growth is the same as
predicted by Eq. (41) with n= 1 independent of the current rise time. Reducing #//t,
results in reduced instability growth, with the smallest growth attained in the case that the
current climbs to its maximum and then returns to zero just as the pinch radius goes to
zero (7 = w4 = 1,/2). The limiting convergence ratio is therefore maximized (CRmax =
4.7) for ;= /4 (See Fig. 7b). For #; <1,, CRumax is strongly dependent on #;, while for ;>
1, it asymptotes to the » = 1 rising current value of 3.6.

With the simple circuit model [Eq. (11d)], the RT growth function is

£ - f;%\/m— R 48)

which again agrees with the constant current case in the A — 0 limit. The limiting CRmax
is plotted in Fig. 7c as a function of A. As A increases from zero, CRmax climbs from the
constant-current value of 5.8 and approaches an asymptotic value of 14.5 as A approaches
infinity. This is qualitatively consistent with the prediction based on power-law currents

that a more rapidly decaying current yields less instability growth as a function of radius.

IV. NUMERICAL SIMULATIONS
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High-resolution 2D numerical simulations illustrate the nonlinear instability
growth and facilitate calibration of the instability model. The numerical system is the
same as that described earlier for the 1D calculations, namely a hydrogen plasma driven
by a magnetic pressure (based on the characteristic dimensional current) that is of order
10* times the initial thermal pressure. In the 2D simulations, perturbations are imposed on
the outer surface of the plasma. In all cases, the initial perturbation is a single mode with
ka = 0.45, A/Rg = 0.025, and with 10 wavelengths in the domain. The initial mode in
these calculations is only moderately resolved with Ao/Az = 10, where Az is the axial grid
resolution.

Density plots from simulations with three different current profiles are shown in
Fig. 9 at various radii. Qualitatively, the results agree in several respects with the
nonlinear instability models as applied to the fast z-pinch model. All three show
development of significant nonlinear growth initiated by the seed mode prior to first
bounce. Constant current produces slightly more growth than the » = 1/2 falling-current
case that gives constant implosion velocity in 1D. The linearly rising current produces
much more growth than the constant- and falling-current cases and the difference is
apparent almost immediately. When the current is high from time zero, the outer plasma
is imparted a post-shock inward velocity before instability growth is initiated.
Consequently, all plasma behind the shock is seen to move inward, including the
developing instability spikes. In the rising-current case, on the other hand, there is a very

brief initial period of subsonic implosion. As the instability growth is also initiated during
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this period, some plasma is left behind at the initial cylinder radius, resulting in spike
lengths equal to the distance traveled by the interface.

In all three cases, an inverse cascade to larger scales is evident within about CR =
2. justifying application of the multimode instability growth model. The bubble
amplitude growth observed in the simulations is compared with four different sets of
model parameters in Fig. 10. In Fig. 10a, we use o. = 0.06 typical of classical multimode
RT and neglect the initial amplitude in Eq. (40). This results in significantly less growth
than observed in the simulations. In Fig. 10b, we again neglect the initial amplitude but
increase o to a value of 0.210, or 3.5 times the classical value, in order to bring the model
in line with the simulations. In Fig. 10c, we return to o = 0.06 but now include the initial
amplitude, yielding growth that is closer to the simulations but still low. Comparison of
Figs. 10a and 10c suggests that during the implosion the system does not have time to
enter the asymptotic regime independent of the initial conditions. According to the
model, doing so with CR,..x = 4 would require an initial amplitude shorter than about
1/1600 the initial gas radius — much smaller than the sp/Ry = 1/559 in the simulation. At
higher CR 4y, the requirement is stricter still.

Finally, in Fig. 10d we include the initial amplitude in the model and increase o to
a value of 0.108, or 1.8 times the typical classical value, in order to achieve the best
overall agreement with the simulations. In its present form, the model suffers from two
main limitations that should cause it to underpredict the bubble acceleration, and
consequently the instability growth. First of all, instability growth produces trailing mass
and therefore reduces the plasma density at the unperturbed interface position. Second,

the model uses the magnetic pressure at the unperturbed interface position rather than at
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the bubble tip, which is at smaller radius. Consequently, it should be no surprise that for
best fit to data the model requires a higher than the classical RT value.

Similarly, we might expect the same model limitations to invalidate the prediction

](7—1/2)/(2—7)

that the B(t) = [l -2(2-y)/3 case is stable. Figure 11 includes a density plot

from a relevant 2D simulation at & = 0.48, which is near the i, = 0.45. The instability
growth is indeed non-zero, but is greatly reduced relative to all three cases presented in
Figs. 9-10. As noted previously, even in the absence of instabilities such rapidly falling

currents do not provide high plasma compression.

V. CONCLUSIONS

The implosion dynamics of a high-field fast z-pinch are described effectively by a
very simple strong shock model that can be solved analytically for a variety of current
forms. The model is valid up to first bounce as long as the magnetic pressure remains
large compared to the initial plasma pressure. For constant drive current, mass
conservation assuming uniform gradients in the shocked plasma captures the shock
trajectory reasonably well.

Rayleigh-Taylor growth at the plasma-field interface is driven by interface
acceleration as well as the effective gravity present in the equilibrium configuration.
Growth function analysis provides predictions for nonlinear single mode and multimode
“turbulent” Rayleigh-Taylor growth and places limits on the maximum convergence

possible for an axially coherent pinch. Rising currents are predicted to produce faster
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growth, as a function of radius, than are constant currents, and decaying currents yield
less growth than constant currents.

Linear-phase simulations compare well with the model in both equilibrium and
non-equilibrium systems. Nonlinear-phase simulations exhibit growth that agrees
qualitatively with the model predictions. Quantitative agreement requires a turbulent-mix

growth parameter a that is nearly twice as high as the typical for classical RT
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Fig. 1. (a) Z-pinch geometry. A time-dependent electric current travels down the outside
of an imploding plasma cylinder with initial radius Ry. (b) Pinch radius vs. time for drive
current that is linear in time (blue), constant (black), and falling to zero like the square
root of the time to pinch (red). Solid and dashed lines denote the fast z-pinch model,
while dotted lines give the standard snowplow model prediction.

Fig. 2. Fast z-pinch implosion model predictions for (a) power-law rising current radius
vs time, (b) power-law rising current velocity and acceleration vs radius, (¢) power-law
falling current radius vs time, (d) power-law falling current velocity and acceleration vs
radius, (e) sinusoidal-current radius vs time and drive current function, and (f) circuit
model radius vs time.

Fig. 3. Comparison of fast z-pinch implosion model with 1D Ares simulations for (a)
constant current, (b) linearly rising current, (¢) n = 1/2 power-law falling current, and (d)
n = 2.75 power-law falling current. Black lines denote simulation radius-vs-time
trajectories of initially equally spaced lagrangian fluid elements. Red lines show
simulation plasma-vacuum interface trajectories. Upper blue lines show plasma-vacuum
interface predicted by the model, and lower blue lines give the predicted shock
trajectories assuming mass conservation and no gradients in the shocked plasma.

Fig. 4. Shocked-plasma radial profiles from 1D Ares simulations for (a) constant current,

(b) linearly rising current, and (¢) » = 1/2 power-law falling current. Densities are
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normalized to the preshock value and scaled by a factor of ten, velocities are scaled by
twice their peak value, and J = (P/ o) 2/(y+1)] is related to the model assumption in
Eq. (6) as discussed in the text.

Fig. 5. Linear-phase perturbation growth agrees well with the model: (a) Hydro-magnetic
equilibrium initial configuration with contribution from effective gravity term only. (b)
Fast pinch with significant contributions from both interface acceleration term and
effective gravity term.

Fig. 6. Turbulent mix model with o. = 0.108 applied to fast z-pinch for (a) Power-law
currents and (b) sinusoidal currents.

Fig. 7. Turbulent mix model (o = 0.108) maximum convergence ratio for axially coherent
fast z-pinch with (a) power-law currents, (b) sinusoidal currents, and (c) circuit model.
Fig. 8. With falling currents, the characteristic current decay time affects the nature of the
implosion as well as the instability growth vs radius. (a) Radius vs time for several
different decay times, all with n = 1/2. Below the critical decay time, the plasma fails to
implode completely. With n = 1/2, the implosion velocity is constant at a critical decay
time. (b) CRpmax Vs current decay time with o = 0.108. Perturbation growth is minimized
at the critical decay time. Below the critical decay time, CRpax is limited by the 1D
implosion dynamics rather than the instability.

Fig. 9. Density plots from high-resolution numerical simulations illustrate the nonlinear
instability growth and provide mix mode calibration. Within each panel, the left-most
image is from a simulation driven with an n = 1/2 falling current at the critical current
decay time, the middle image is constant current, and the right-most image is linearly

rising current.
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Fig. 10. Comparison of nonlinear multimode model and 2D numerical simulations for
constant, linearly rising, and » = 1/2 falling current with the critical current decay time.
Lines denote model results, and symbols represent simulation results. (a) o = 0.060 and
initial amplitude neglected, (b) o = 0.210 with initial amplitude neglected, (¢) o = 0.060
and initial amplitude included, (d) a = 0.108 with initial amplitude included.

Fig. 11. Density plots from high-resolution numerical simulations near minimum radius
for the n = 2.75, 7, = 3.75 falling current case. This special case, predicted by the model
to be stable, is the leftmost image. To its right are the » = 1/2 falling current case,

constant current, and linearly rising current.
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